The Construction of A-Code from Projective Spaces over Finite Fields
نویسنده
چکیده
A3-code has a dishonest arbiter who may disturb the communication compared with A2-code, and the arbiter also has some secret key information used to arbitrate in the case of dispute between the senders and receivers. This paper firstly introduces the model of A3-code and the seven types of possible cheating attacks as well as their computational formula. And then a construction of A3-code is presented using the incidence relation of flats from projective spaces over finite fields. The parameters of the code and the probabilities of success in different attacks are also computed, assuming that the probability distributions of source states and participants keys are uniform. Key–Words: A3-codes, projective spaces , finite fields.
منابع مشابه
Spreads in Projective Hjelmslev Spaces over Finite Chain Rings
We prove a necessary and sufficient condition for the existence of spreads in the projective Hjelmslev geometries PHG Rn 1 R . Further, we give a construction of projective Hjelmslev planes from spreads that generalizes the familiar construction of projective planes from spreads in PG n q .
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملA construction of one-dimensional affine flag-transitive linear spaces
The finite flag-transitive linear spaces which have an insoluble automorphism group were given a precise description in [BDD+90], and their classification has recently been completed (see [Lie98] and [Sax02]). However, the remaining case where the automorphism group is a subgroup of one-dimensional affine transformations has not been classified and bears a variety of known examples. Here we giv...
متن کاملDirect products in projective Segre codes
Let K = Fq be a finite field. We introduce a family of projective Reed-Muller-type codes called projective Segre codes. Using commutative algebra and linear algebra methods, we study their basic parameters and show that they are direct products of projective Reed-Mullertype codes. As a consequence we recover some results on projective Reed-Muller-type codes over the Segre variety and over proje...
متن کاملExtending Nathanson Heights to Arbitrary Finite Fields
In this paper, we extend the definition of the Nathanson height from points in projective spaces over Fp to points in projective spaces over arbitrary finite fields. If [a0 : . . . : an] ∈ P(Fp), then the Nathanson height is hp([a0 : a1 : . . . : ad]) = min b∈Fp d ∑ i=0 H(bai) where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element of {0, 1, . . . , p− 1} congruent to N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013